
1

UNIT – 3

The exception handling in java is one of the powerful mechanism to handle the runtime errors so that

normal flow of the application can be maintained.

What is exception

Dictionary Meaning: Exception is an abnormal condition.

In java, exception is an event that disrupts the normal flow of the program. It is an object which is thrown

at runtime.

What is exception handling

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, IO, SQL, Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application.

Exception normally disrupts the normal flow of the application that is why we use exception handling. Let's

take a scenario:

statement 1;

statement 2;

statement 3;

statement 4;

statement 5;//exception occurs

statement 6;

statement 7;

statement 8;

statement 9;

statement 10;

Suppose there is 10 statements in your program and there occurs an exception at statement 5, rest of the

code will not be executed i.e. statement 6 to 10 will not run. If we perform exception handling, rest of the

statement will be executed. That is why we use exception handling in java.

2

Hierarchy of Java Exception classes

3

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered as unchecked

exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

Difference between checked and unchecked exceptions

1) Checked Exception

The classes that extend Throwable class except RuntimeException and Error are known as checked

exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g. ArithmeticException,

NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not checked at

compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Common scenarios where exceptions may occur

There are given some scenarios where unchecked exceptions can occur. They are as follows:

1) Scenario where ArithmeticException occurs

If we divide any number by zero, there occurs an ArithmeticException.

1. int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs

If we have null value in any variable, performing any operation by the variable occurs an

NullPointerException.

1. String s=null;

2. System.out.println(s.length());//NullPointerException

4

3) Scenario where NumberFormatException occurs

The wrong formatting of any value, may occur NumberFormatException. Suppose I have a string variable

that have characters, converting this variable into digit will occur NumberFormatException.

1. String s="abc";

2. int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs

If you are inserting any value in the wrong index, it would result ArrayIndexOutOfBoundsException as

shown below:

1. int a[]=new int[5];

2. a[10]=50; //ArrayIndexOutOfBoundsException

Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. try

2. catch

3. finally

4. throw

5. throws

Java try-catch

Java try block

Java try block is used to enclose the code that might throw an exception. It must be used within the

method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

try{

//code that may throw exception

}catch(Exception_class_Name ref){}

Syntax of try-finally block

try{

//code that may throw exception

}finally{}

5

Java catch block

Java catch block is used to handle the Exception. It must be used after the try block only.

You can use multiple catch block with a single try.

Problem without exception handling

Let's try to understand the problem if we don't use try-catch block.

public class Testtrycatch1{

 public static void main(String args[]){

 int data=50/0;//may throw exception

 System.out.println("rest of the code...");

}

}

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

As displayed in the above example, rest of the code is not executed (in such case, rest of the code...

statement is not printed).

There can be 100 lines of code after exception. So all the code after exception will not be executed.

Solution by exception handling

Let's see the solution of above problem by java try-catch block.

public class Testtrycatch2{

 public static void main(String args[]){

 try{

 int data=50/0;

 }catch(ArithmeticException e){System.out.println(e);}

 System.out.println("rest of the code...");

}

}

Output:

Exception in thread main java.lang.ArithmeticException:/ by zero

rest of the code...

Now, as displayed in the above example, rest of the code is executed i.e. rest of the code... statement is

printed.

6

Internal working of java try-catch block

The JVM firstly checks whether the exception is handled or not. If exception is not handled, JVM provides a

default exception handler that performs the following tasks:

o Prints out exception description.

o Prints the stack trace (Hierarchy of methods where the exception occurred).

o Causes the program to terminate.

But if exception is handled by the application programmer, normal flow of the application is maintained

i.e. rest of the code is executed.

Java Multi catch block

If you have to perform different tasks at the occurrence of different Exceptions, use java multi catch

block.

Let's see a simple example of java multi-catch block.

public class TestMultipleCatchBlock{

 public static void main(String args[]){

 try{

 int a[]=new int[5];

7

 a[5]=30/0;

 }

 catch(ArithmeticException e){System.out.println("task1 is completed");}

 catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

 catch(Exception e){System.out.println("common task completed");}

 System.out.println("rest of the code...");

 }

}
Output:task1 completed

 rest of the code...

Rule: At a time only one Exception is occured and at a time only one catch block is executed.

Rule: All catch blocks must be ordered from most specific to most general i.e. catch for

ArithmeticException must come before catch for Exception .

class TestMultipleCatchBlock1{

 public static void main(String args[]){

 try{

 int a[]=new int[5];

 a[5]=30/0;

 }

 catch(Exception e){System.out.println("common task completed");}

 catch(ArithmeticException e){System.out.println("task1 is completed");}

 catch(ArrayIndexOutOfBoundsException e){System.out.println("task 2 completed");}

 System.out.println("rest of the code...");

 }

}

Output:

Compile-time error

Java Nested try block

The try block within a try block is known as nested try block in java.

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire block itself

may cause another error. In such cases, exception handlers have to be nested.

Syntax:

....

8

try

{

 statement 1;

 statement 2;

 try

 {

 statement 1;

 statement 2;

 }

 catch(Exception e)

 {

 }

}

catch(Exception e)

{

}

....

Java nested try example

Let's see a simple example of java nested try block.

class Excep6{

 public static void main(String args[]){

 try{

 try{

 System.out.println("going to divide");

 int b =39/0;

 }catch(ArithmeticException e){System.out.println(e);}

 try{

 int a[]=new int[5];

 a[5]=4;

 }catch(ArrayIndexOutOfBoundsException e){System.out.println(e);}

 System.out.println("other statement);

 }catch(Exception e){System.out.println("handeled");}

 System.out.println("normal flow..");

 }

}

9

Java finally block

Java finally block is a block that is used to execute important code such as closing connection, stream

etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Note: If you don't handle exception, before terminating the program, JVM executes finally block(if any).

Why use java finally

o Finally block in java can be used to put "cleanup" code such as closing a file, closing connection

etc.

10

Usage of Java finally

Let's see the different cases where java finally block can be used.

Case 1

Let's see the java finally example where exception doesn't occur.

class TestFinallyBlock{

 public static void main(String args[]){

 try{

 int data=25/5;

 System.out.println(data);

 }

 catch(NullPointerException e){System.out.println(e);}

 finally{System.out.println("finally block is always executed");}

 System.out.println("rest of the code...");

 }

}
Output:5

 finally block is always executed

 rest of the code...

Case 2

Let's see the java finally example where exception occurs and not handled.

class TestFinallyBlock1{

 public static void main(String args[]){

 try{

 int data=25/0;

 System.out.println(data);

 }

 catch(NullPointerException e){System.out.println(e);}

 finally{System.out.println("finally block is always executed");}

 System.out.println("rest of the code...");

 }

}
Output:finally block is always executed

 Exception in thread main java.lang.ArithmeticException:/ by zero

Case 3

Let's see the java finally example where exception occurs and handled.

public class TestFinallyBlock2{

11

 public static void main(String args[]){

 try{

 int data=25/0;

 System.out.println(data);

 }

 catch(ArithmeticException e){System.out.println(e);}

 finally{System.out.println("finally block is always executed");}

 System.out.println("rest of the code...");

 }

}
Output:Exception in thread main java.lang.ArithmeticException:/ by zero

 finally block is always executed

 rest of the code...

Rule: For each try block there can be zero or more catch blocks, but only one finally block.

Note: The finally block will not be executed if program exits(either by calling System.exit() or by causing a

fatal error that causes the process to abort).

Java throw keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw keyword. The throw keyword is

mainly used to throw custom exception. We will see custom exceptions later.

The syntax of java throw keyword is given below.

1. throw exception;

Let's see the example of throw IOException.

1. throw new IOException("sorry device error);

java throw keyword example

In this example, we have created the validate method that takes integer value as a parameter. If the age

is less than 18, we are throwing the ArithmeticException otherwise print a message welcome to vote.

public class TestThrow1{

 static void validate(int age){

 if(age<18)

 throw new ArithmeticException("not valid");

 else

 System.out.println("welcome to vote");

 }

12

 public static void main(String args[]){

 validate(13);

 System.out.println("rest of the code...");

 }

}

Output:

Exception in thread main java.lang.ArithmeticException:not valid

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an information to the programmer
that there may occur an exception so it is better for the programmer to provide the exception handling

code so that normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If there occurs any unchecked
exception such as NullPointerException, it is programmers fault that he is not performing check up before

the code being used.

Syntax of java throws

return_type method_name() throws exception_class_name{

//method code

}

Which exception should be declared

Ans) checked exception only, because:

o unchecked Exception: under your control so correct your code.

o error: beyond your control e.g. you are unable to do anything if there occurs VirtualMachineError

or StackOverflowError.

Advantage of Java throws keyword

Now Checked Exception can be propagated (forwarded in call stack).

It provides information to the caller of the method about the exception.

Java throws example

Let's see the example of java throws clause which describes that checked exceptions can be propagated

by throws keyword.

import java.io.IOException;

class Testthrows1{

 void m()throws IOException{

13

 throw new IOException("device error");//checked exception

 }

 void n()throws IOException{

 m();

 }

 void p(){

 try{

 n();

 }catch(Exception e){System.out.println("exception handled");}

 }

 public static void main(String args[]){

 Testthrows1 obj=new Testthrows1();

 obj.p();

 System.out.println("normal flow...");

 }

}

Output:

exception handled

normal flow...

Rule: If you are calling a method that declares an exception, you must either caught or declare the

exception.

There are two cases:

1. Case1:You caught the exception i.e. handle the exception using try/catch.

2. Case2:You declare the exception i.e. specifying throws with the method.

Case1: You handle the exception

o In case you handle the exception, the code will be executed fine whether exception occurs during

the program or not.

import java.io.*;

class M{

 void method()throws IOException{

 throw new IOException("device error");

 }

}

14

public class Testthrows2{

 public static void main(String args[]){

 try{

 M m=new M();

 m.method();

 }catch(Exception e){System.out.println("exception handled");}

 System.out.println("normal flow...");

 }

}
Output:exception handled

 normal flow...

Case2: You declare the exception

o A)In case you declare the exception, if exception does not occur, the code will be executed fine.

o B)In case you declare the exception if exception occures, an exception will be thrown at runtime

because throws does not handle the exception.

A)Program if exception does not occur

import java.io.*;

class M{

 void method()throws IOException{

 System.out.println("device operation performed");

 }

}

class Testthrows3{

 public static void main(String args[])throws IOException{//declare exception

 M m=new M();

 m.method();

 System.out.println("normal flow...");

 }

}
Output:device operation performed

 normal flow...

B)Program if exception occurs

import java.io.*;

class M{

 void method()throws IOException{

 throw new IOException("device error");

 }

15

}

class Testthrows4{

 public static void main(String args[])throws IOException{//declare exception

 M m=new M();

 m.method();

 System.out.println("normal flow...");

 }

}
Output:Runtime Exception

Difference between throw and throws in Java

There are many differences between throw and throws keywords. A list of differences between throw and

throws are given below:

No. throw throws

1) Java throw keyword is used to explicitly

throw an exception.

Java throws keyword is used to declare an

exception.

2) Checked exception cannot be propagated

using throw only.

Checked exception can be propagated with

throws.

3) Throw is followed by an instance. Throws is followed by class.

4) Throw is used within the method. Throws is used with the method signature.

5) You cannot throw multiple exceptions. You can declare multiple exceptions e.g.

public void method()throws

IOException,SQLException.

Java throw example
void m(){

throw new ArithmeticException("sorry");

}

Java throws example
void m()throws ArithmeticException{

//method code

16

}

Java throw and throws example
void m()throws ArithmeticException{

throw new ArithmeticException("sorry");

}

Difference between final, finally and finalize

There are many differences between final, finally and finalize. A list of differences between final, finally

and finalize are given below:

No. final finally finalize

1) Final is used to apply restrictions on

class, method and variable. Final

class can't be inherited, final

method can't be overridden and

final variable value can't be

changed.

Finally is used to place

important code, it will

be executed whether

exception is handled or

not.

Finalize is used to

perform clean up

processing just before

object is garbage

collected.

2) Final is a keyword. Finally is a block. Finalize is a method.

Java final example
class FinalExample{

public static void main(String[] args){

final int x=100;

x=200;//Compile Time Error

}}

Java finally example
class FinallyExample{

public static void main(String[] args){

try{

int x=300;

}catch(Exception e){System.out.println(e);}

finally{System.out.println("finally block is executed");}

}}

Java finalize example
class FinalizeExample{

17

public void finalize(){System.out.println("finalize called");}

public static void main(String[] args){

FinalizeExample f1=new FinalizeExample();

FinalizeExample f2=new FinalizeExample();

f1=null;

f2=null;

System.gc();

}}

Java Custom Exception

If you are creating your own Exception that is known as custom exception or user-defined exception. Java

custom exceptions are used to customize the exception according to user need.

By the help of custom exception, you can have your own exception and message.

Let's see a simple example of java custom exception.

class InvalidAgeException extends Exception{

 InvalidAgeException(String s){

 super(s);

 }

}

class TestCustomException1{

 static void validate(int age)throws InvalidAgeException{

 if(age<18)

 throw new InvalidAgeException("not valid");

 else

 System.out.println("welcome to vote");

 }

 public static void main(String args[]){

 try{

 validate(13);

 }catch(Exception m){System.out.println("Exception occured: "+m);}

 System.out.println("rest of the code...");

 }

}
Output:Exception occured: InvalidAgeException:not valid

 rest of the code...

18

Multithreading in Java

Multithreading in java is a process of executing multiple threads simultaneously.

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory area. They
don't allocate separate memory area so saves memory, and context-switching between the threads takes

less time than process.

Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform multiple operations

at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception occur in a single thread.

Multitasking

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to utilize the

CPU. Multitasking can be achieved by two ways:

o Process-based Multitasking(Multiprocessing)

o Thread-based Multitasking(Multithreading)

1) Process-based Multitasking (Multiprocessing)

o Each process have its own address in memory i.e. each process allocates separate memory area.

o Process is heavyweight.

o Cost of communication between the process is high.

o Switching from one process to another require some time for saving and loading registers, memory

maps, updating lists etc.

2) Thread-based Multitasking (Multithreading)

o Threads share the same address space.

o Thread is lightweight.

o Cost of communication between the thread is low.

19

Note: At least one process is required for each thread.

What is Thread in java

A thread is a lightweight sub process, a smallest unit of processing. It is a separate path of execution.

Threads are independent, if there occurs exception in one thread, it doesn't affect other threads. It shares

a common memory area.

As shown in the above figure, thread is executed inside the process. There is context-switching between

the threads. There can be multiple processes inside the OS and one process can have multiple threads.

Note: At a time one thread is executed only.

Life cycle of a Thread (Thread States)

A thread can be in one of the five states. According to sun, there is only 4 states in thread life cycle in

java new, runnable, non-runnable and terminated. There is no running state.

But for better understanding the threads, we are explaining it in the 5 states.

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows:

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

20

5. Terminated

1) New

The thread is in new state if you create an instance of Thread class but before the invocation of start()

method.

2) Runnable

The thread is in runnable state after invocation of start() method, but the thread scheduler has not

selected it to be the running thread.

3) Running

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated

A thread is in terminated or dead state when its run() method exits.

How to create thread

There are two ways to create a thread:

21

1. By extending Thread class

2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform operations on a thread.Thread

class extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

o Thread()

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run() method on the

thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep

(temporarily cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object to temporarily pause and

allow other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended thread(depricated).

22

17. public void stop(): is used to stop the thread(depricated).

18. public boolean isDaemon(): tests if the thread is a daemon thread.

19. public void setDaemon(boolean b): marks the thread as daemon or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been interrupted.

22. public static boolean interrupted(): tests if the current thread has been interrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose instances are intended to be

executed by a thread. Runnable interface have only one method named run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It performs following tasks:

o A new thread starts(with new callstack).

o The thread moves from New state to the Runnable state.

o When the thread gets a chance to execute, its target run() method will run.

1) Java Thread Example by extending Thread class

class Multi extends Thread{

public void run(){

System.out.println("thread is running...");

}

public static void main(String args[]){

Multi t1=new Multi();

t1.start();

 }

}

Output:thread is running...

2) Java Thread Example by implementing Runnable interface

class Multi3 implements Runnable{

public void run(){

23

System.out.println("thread is running...");

}

public static void main(String args[]){

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start();

 }

}

Output:thread is running...

If you are not extending the Thread class,your class object would not be treated as a thread object.So

you need to explicitely create Thread class object.We are passing the object of your class that

implements Runnable so that your class run() method may execute.

Thread Scheduler in Java

Thread scheduler in java is the part of the JVM that decides which thread should run.

There is no guarantee that which runnable thread will be chosen to run by the thread scheduler.

Only one thread at a time can run in a single process.

The thread scheduler mainly uses preemptive or time slicing scheduling to schedule the threads.

Sleep method in java

The sleep() method of Thread class is used to sleep a thread for the specified amount of time.

Syntax of sleep() method in java

The Thread class provides two methods for sleeping a thread:

o public static void sleep(long miliseconds)throws InterruptedException

o public static void sleep(long miliseconds, int nanos)throws InterruptedException

Example of sleep method in java
class TestSleepMethod1 extends Thread{

 public void run(){

 for(int i=1;i<5;i++){

 try{Thread.sleep(500);}catch(InterruptedException e){System.out.println(e);}

 System.out.println(i);

 }

 }

 public static void main(String args[]){

24

 TestSleepMethod1 t1=new TestSleepMethod1();

 TestSleepMethod1 t2=new TestSleepMethod1();

 t1.start();

 t2.start();

 }

}

Output:

 1

 1

 2

 2

 3

 3

 4

 4

As you know well that at a time only one thread is executed. If you sleep a thread for the specified

time,the thread shedular picks up another thread and so on.

Can we start a thread twice

No. After starting a thread, it can never be started again. If you does so, an IllegalThreadStateException is

thrown. In such case, thread will run once but for second time, it will throw exception.

Let's understand it by the example given below:

public class TestThreadTwice1 extends Thread{

 public void run(){

 System.out.println("running...");

 }

 public static void main(String args[]){

 TestThreadTwice1 t1=new TestThreadTwice1();

 t1.start();

 t1.start();

 }

}

 running

 Exception in thread "main" java.lang.IllegalThreadStateException

What if we call run() method directly instead start()
method?

o Each thread starts in a separate call stack.

25

o Invoking the run() method from main thread, the run() method goes onto the current call stack

rather than at the beginning of a new call stack.

class TestCallRun1 extends Thread{

 public void run(){

 System.out.println("running...");

 }

 public static void main(String args[]){

 TestCallRun1 t1=new TestCallRun1();

 t1.run();//fine, but does not start a separate call stack

 }

}

Output:running...

 Problem if you direct call run() method

class TestCallRun2 extends Thread{

 public void run(){

 for(int i=1;i<5;i++){

 try{Thread.sleep(500);}catch(InterruptedException e){System.out.println(e);}

 System.out.println(i);

 }

 }

 public static void main(String args[]){

 TestCallRun2 t1=new TestCallRun2();

 TestCallRun2 t2=new TestCallRun2();

 t1.run();

 t2.run();

 }

}
Output:1

 2

 3

26

 4

 5

 1

 2

 3

 4

 5

 As you can see in the above program that there is no context-switching because here t1 and t2 will be

treated as normal object not thread object.

The join() method

The join() method waits for a thread to die. In other words, it causes the currently running threads to stop

executing until the thread it joins with completes its task.

Syntax:

public void join()throws InterruptedException

public void join(long milliseconds)throws InterruptedException

Example of join() method

class TestJoinMethod1 extends Thread{

 public void run(){

 for(int i=1;i<=5;i++){

 try{

 Thread.sleep(500);

 }catch(Exception e){System.out.println(e);}

 System.out.println(i);

 }

 }

public static void main(String args[]){

 TestJoinMethod1 t1=new TestJoinMethod1();

 TestJoinMethod1 t2=new TestJoinMethod1();

 TestJoinMethod1 t3=new TestJoinMethod1();

 t1.start();

 try{

 t1.join();

 }catch(Exception e){System.out.println(e);}

 t2.start();

 t3.start();

 }

}
Output:1

27

 2

 3

 4

 5

 1

 1

 2

 2

 3

 3

 4

 4

 5

 5

As you can see in the above example,when t1 completes its task then t2 and t3 starts executing.

Example of join(long miliseconds) method

class TestJoinMethod2 extends Thread{

 public void run(){

 for(int i=1;i<=5;i++){

 try{

 Thread.sleep(500);

 }catch(Exception e){System.out.println(e);}

 System.out.println(i);

 }

 }

public static void main(String args[]){

 TestJoinMethod2 t1=new TestJoinMethod2();

 TestJoinMethod2 t2=new TestJoinMethod2();

 TestJoinMethod2 t3=new TestJoinMethod2();

 t1.start();

 try{

 t1.join(1500);

 }catch(Exception e){System.out.println(e);}

 t2.start();

 t3.start();

 }

}
Output:1

 2

 3

 1

 4

 1

 2

 5

 2

 3

 3

28

 4

 4

 5

 5

In the above example,when t1 is completes its task for 1500 miliseconds(3 times) then t2 and t3 starts

executing.

getName(),setName(String) and getId() method:

public String getName()

public void setName(String name)

public long getId()

class TestJoinMethod3 extends Thread{

 public void run(){

 System.out.println("running...");

 }

 public static void main(String args[]){

 TestJoinMethod3 t1=new TestJoinMethod3();

 TestJoinMethod3 t2=new TestJoinMethod3();

 System.out.println("Name of t1:"+t1.getName());

 System.out.println("Name of t2:"+t2.getName());

 System.out.println("id of t1:"+t1.getId());

 t1.start();

 t2.start();

 t1.setName("Sonoo Jaiswal");

 System.out.println("After changing name of t1:"+t1.getName());

 }

}
Output:Name of t1:Thread-0

 Name of t2:Thread-1

 id of t1:8

 running...

 After changling name of t1:Sonoo Jaiswal

 running...

The currentThread() method:

The currentThread() method returns a reference to the currently executing thread object.

29

Syntax:

public static Thread currentThread()

Example of currentThread() method

class TestJoinMethod4 extends Thread{

 public void run(){

 System.out.println(Thread.currentThread().getName());

 }

 }

 public static void main(String args[]){

 TestJoinMethod4 t1=new TestJoinMethod4();

 TestJoinMethod4 t2=new TestJoinMethod4();

 t1.start();

 t2.start();

 }

}
Output:Thread-0

 Thread-1

Priority of a Thread (Thread Priority):
Each thread have a priority. Priorities are represented by a number between 1 and 10. In most cases,

thread schedular schedules the threads according to their priority (known as preemptive scheduling).

But it is not guaranteed because it depends on JVM specification that which scheduling it chooses.

3 constants defiend in Thread class:

1. public static int MIN_PRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the value of

MAX_PRIORITY is 10.

Example of priority of a Thread:

class TestMultiPriority1 extends Thread{

 public void run(){

 System.out.println("running thread name is:"+Thread.currentThread().getName());

 System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

30

 }

 public static void main(String args[]){

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

 m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

 m2.start();

 }

}
Output:running thread name is:Thread-0

 running thread priority is:10

 running thread name is:Thread-1

 running thread priority is:1

Daemon Thread in Java

Daemon thread in java is a service provider thread that provides services to the user thread. Its life

depend on the mercy of user threads i.e. when all the user threads dies, JVM terminates this thread

automatically.

There are many java daemon threads running automatically e.g. gc, finalizer etc.

You can see all the detail by typing the jconsole in the command prompt. The jconsole tool provides

information about the loaded classes, memory usage, running threads etc.

Points to remember for Daemon Thread in Java

o It provides services to user threads for background supporting tasks. It has no role in life than to

serve user threads.

o Its life depends on user threads.

o It is a low priority thread.

Why JVM terminates the daemon thread if there is no user thread?

The sole purpose of the daemon thread is that it provides services to user thread for background

supporting task. If there is no user thread, why should JVM keep running this thread. That is why JVM

terminates the daemon thread if there is no user thread.

Methods for Java Daemon thread by Thread class

The java.lang.Thread class provides two methods for java daemon thread.

31

No. Method Description

1) public void setDaemon(boolean

status)

is used to mark the current thread as daemon thread or

user thread.

2) public boolean isDaemon() is used to check that current is daemon.

Simple example of Daemon thread in java

File: MyThread.java

public class TestDaemonThread1 extends Thread{

 public void run(){

 if(Thread.currentThread().isDaemon()){//checking for daemon thread

 System.out.println("daemon thread work");

 }

 else{

 System.out.println("user thread work");

 }

 }

 public static void main(String[] args){

 TestDaemonThread1 t1=new TestDaemonThread1();//creating thread

 TestDaemonThread1 t2=new TestDaemonThread1();

 TestDaemonThread1 t3=new TestDaemonThread1();

 t1.setDaemon(true);//now t1 is daemon thread

 t1.start();//starting threads

 t2.start();

 t3.start();

 }

}

Output
daemon thread work

user thread work

user thread work

32

Note: If you want to make a user thread as Daemon, it must not be started otherwise it will throw

IllegalThreadStateException.

ThreadGroup in Java

Java provides a convenient way to group multiple threads in a single object. In such way, we can suspend,

resume or interrupt group of threads by a single method call.

Note: Now suspend(), resume() and stop() methods are deprecated.

Java thread group is implemented by java.lang.ThreadGroup class.

Constructors of ThreadGroup class

There are only two constructors of ThreadGroup class.

No. Constructor Description

1) ThreadGroup(String name) creates a thread group with given name.

2) ThreadGroup(ThreadGroup parent, String

name)

creates a thread group with given parent group

and name.

Important methods of ThreadGroup class

There are many methods in ThreadGroup class. A list of important methods are given below.

No. Method Description

1) int activeCount() returns no. of threads running in current group.

2) int activeGroupCount() returns a no. of active group in this thread group.

3) void destroy() destroys this thread group and all its sub groups.

4) String getName() returns the name of this group.

33

5) ThreadGroup getParent() returns the parent of this group.

6) void interrupt() interrupts all threads of this group.

7) void list() prints information of this group to standard console.

Let's see a code to group multiple threads.

1. ThreadGroup tg1 = new ThreadGroup("Group A");

2. Thread t1 = new Thread(tg1,new MyRunnable(),"one");

3. Thread t2 = new Thread(tg1,new MyRunnable(),"two");

4. Thread t3 = new Thread(tg1,new MyRunnable(),"three");

Now all 3 threads belong to one group. Here, tg1 is the thread group name, MyRunnable is the class that

implements Runnable interface and "one", "two" and "three" are the thread names.

Now we can interrupt all threads by a single line of code only.

1. Thread.currentThread().getThreadGroup().interrupt();

ThreadGroup Example

File: ThreadGroupDemo.java

public class ThreadGroupDemo implements Runnable{

 public void run() {

 System.out.println(Thread.currentThread().getName());

 }

 public static void main(String[] args) {

 ThreadGroupDemo runnable = new ThreadGroupDemo();

 ThreadGroup tg1 = new ThreadGroup("Parent ThreadGroup");

 Thread t1 = new Thread(tg1, runnable,"one");

 t1.start();

 Thread t2 = new Thread(tg1, runnable,"two");

 t2.start();

 Thread t3 = new Thread(tg1, runnable,"three");

 t3.start();

 System.out.println("Thread Group Name: "+tg1.getName());

 tg1.list();

34

 }

 }

Output:

one

two

three

Thread Group Name: Parent ThreadGroup

java.lang.ThreadGroup[name=Parent ThreadGroup,maxpri=10]

 Thread[one,5,Parent ThreadGroup]

 Thread[two,5,Parent ThreadGroup]

 Thread[three,5,Parent ThreadGroup]

Synchronization in Java

Synchronization in java is the capability to control the access of multiple threads to any shared resource.

Java Synchronization is better option where we want to allow only one thread to access the shared resource.

Why use Synchronization

The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

Types of Synchronization

There are two types of synchronization

1. Process Synchronization

2. Thread Synchronization

Here, we will discuss only thread synchronization.

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread communication.

1. Mutual Exclusive

1. Synchronized method.

2. Synchronized block.

3. static synchronization.

2. Cooperation (Inter-thread communication in java)

35

Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while sharing data. This can be

done by three ways in java:

1. by synchronized method

2. by synchronized block

3. by static synchronization

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every object has an lock
associated with it. By convention, a thread that needs consistent access to an object's fields has to acquire

the object's lock before accessing them, and then release the lock when it's done with them.

From Java 5 the package java.util.concurrent.locks contains several lock implementations.

Understanding the problem without Synchronization

In this example, there is no synchronization, so output is inconsistent. Let's see the example:

Class Table{

void printTable(int n){//method not synchronized

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

36

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output: 5

 100

 10

 200

 15

 300

 20

 400

 25

 500

Java synchronized method

If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource.

When a thread invokes a synchronized method, it automatically acquires the lock for that object and

releases it when the thread completes its task.

//example of java synchronized method

class Table{

 synchronized void printTable(int n){//synchronized method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

37

 }catch(Exception e){System.out.println(e);}

 }

 }

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronization2{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Output: 5

 10

 15

 20

 25

 100

 200

 300

 400

38

 500

Synchronized Block in Java

Synchronized block can be used to perform synchronization on any specific resource of the method.

Suppose you have 50 lines of code in your method, but you want to synchronize only 5 lines, you can
use synchronized block.

If you put all the codes of the method in the synchronized block, it will work same as the
synchronized method.

Points to remember for Synchronized block

o Synchronized block is used to lock an object for any shared resource.

o Scope of synchronized block is smaller than the method.

Syntax to use synchronized block

synchronized (object reference expression) {

 //code block

}

Example of synchronized block

Let's see the simple example of synchronized block.

Program of synchronized block

class Table{

 void printTable(int n){

 synchronized(this){//synchronized block

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

 }//end of the method

}

class MyThread1 extends Thread{

Table t;

39

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

}

}

public class TestSynchronizedBlock1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}
Output:5

 10

 15

 20

 25

 100

 200

 300

 400

 500

Same Example of synchronized block by using annonymous class:

//Program of synchronized block by using annonymous class

40

class Table{

void printTable(int n){

 synchronized(this){//synchronized block

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

 }

}//end of the method

}

public class TestSynchronizedBlock2{

public static void main(String args[]){

final Table obj = new Table();//only one object

Thread t1=new Thread(){

public void run(){

obj.printTable(5);

}

};

Thread t2=new Thread(){

public void run(){

obj.printTable(100);

}

};

t1.start();

t2.start();

}

}
Output:5

 10

 15

 20

 25

 100

 200

 300

41

 400

 500

Static Synchronization

If you make any static method as synchronized, the lock will be on the class not on object.

Problem without static synchronization

Suppose there are two objects of a shared class(e.g. Table) named object1 and object2.In case of
synchronized method and synchronized block there cannot be interference between t1 and t2 or t3
and t4 because t1 and t2 both refers to a common object that have a single lock.But there can be
interference between t1 and t3 or t2 and t4 because t1 acquires another lock and t3 acquires another

lock.I want no interference between t1 and t3 or t2 and t4.Static synchronization solves this problem.

Example of static synchronization

In this example we are applying synchronized keyword on the static method to perform static
synchronization.

class Table{

 synchronized static void printTable(int n){

 for(int i=1;i<=10;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){}

 }

 }

}

class MyThread1 extends Thread{

42

public void run(){

Table.printTable(1);

}

}

 class MyThread2 extends Thread{

public void run(){

Table.printTable(10);

}

}

 class MyThread3 extends Thread{

public void run(){

Table.printTable(100);

}

}

class MyThread4 extends Thread{

public void run(){

Table.printTable(1000);

}

}

public class TestSynchronization4{

public static void main(String t[]){

MyThread1 t1=new MyThread1();

MyThread2 t2=new MyThread2();

MyThread3 t3=new MyThread3();

MyThread4 t4=new MyThread4();

t1.start();

t2.start();

t3.start();

t4.start();

}

}

Output: 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

43

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Inter-thread communication in Java

Inter-thread communication or Co-operation is all about allowing synchronized threads to

communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is paused running in its

critical section and another thread is allowed to enter (or lock) in the same critical section to be

executed.It is implemented by following methods of Object class:

o wait()

o notify()

o notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread invokes the notify() method

or the notifyAll() method for this object, or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the synchronized method

only otherwise it will throw exception.

44

Method Description

public final void wait()throws InterruptedException waits until object is notified.

public final void wait(long timeout)throws

InterruptedException

waits for the specified amount of

time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this object,

one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion of the

implementation. Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

Understanding the process of inter-thread communication

The point to point explanation of the above diagram is as follows:

1. Threads enter to acquire lock.

2. Lock is acquired by on thread.

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it releases the

lock and exits.

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable state).

45

5. Now thread is available to acquire lock.

6. After completion of the task, thread releases the lock and exits the monitor state of the object.

Why wait(), notify() and notifyAll() methods are defined in Object class not
Thread class?

It is because they are related to lock and object has a lock.

Difference between wait and sleep?

Let's see the important differences between wait and sleep methods.

wait() sleep()

wait() method releases the lock sleep() method doesn't release the lock.

is the method of Object class is the method of Thread class

is the non-static method is the static method

is the non-static method is the static method

should be notified by notify() or

notifyAll() methods

after the specified amount of time, sleep is

completed.

Example of inter thread communication in java

Let's see the simple example of inter thread communication.

class Customer{

int amount=10000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw...");

if(this.amount<amount){

System.out.println("Less balance; waiting for deposit...");

try{wait();}catch(Exception e){}

}

this.amount-=amount;

46

System.out.println("withdraw completed...");

}

synchronized void deposit(int amount){

System.out.println("going to deposit...");

this.amount+=amount;

System.out.println("deposit completed... ");

notify();

}

}

class Test{

public static void main(String args[]){

final Customer c=new Customer();

new Thread(){

public void run(){c.withdraw(15000);}

}.start();

new Thread(){

public void run(){c.deposit(10000);}

}.start();

}}
Output: going to withdraw...

 Less balance; waiting for deposit...

 going to deposit...

 deposit completed...

 withdraw completed

	What is exception
	What is exception handling
	Advantage of Exception Handling
	Hierarchy of Java Exception classes
	Types of Exception

	Difference between checked and unchecked exceptions
	1) Checked Exception
	2) Unchecked Exception
	3) Error
	Common scenarios where exceptions may occur
	1) Scenario where ArithmeticException occurs
	2) Scenario where NullPointerException occurs
	3) Scenario where NumberFormatException occurs
	4) Scenario where ArrayIndexOutOfBoundsException occurs

	Java Exception Handling Keywords
	Java try-catch
	Java try block
	Syntax of java try-catch
	Syntax of try-finally block

	Java catch block
	Problem without exception handling
	Solution by exception handling
	Internal working of java try-catch block
	Java Multi catch block
	Rule: At a time only one Exception is occured and at a time only one catch block is executed.
	Rule: All catch blocks must be ordered from most specific to most general i.e. catch for ArithmeticException must come before catch for Exception .

	Java Nested try block
	Why use nested try block
	Syntax:
	Java nested try example

	Java finally block
	Note: If you don't handle exception, before terminating the program, JVM executes finally block(if any).
	Why use java finally
	Usage of Java finally
	Case 1
	Case 2
	Case 3
	Rule: For each try block there can be zero or more catch blocks, but only one finally block.
	Note: The finally block will not be executed if program exits(either by calling System.exit() or by causing a fatal error that causes the process to abort).

	Java throw keyword
	java throw keyword example

	Java throws keyword
	Syntax of java throws
	Which exception should be declared
	Advantage of Java throws keyword
	Java throws example
	Rule: If you are calling a method that declares an exception, you must either caught or declare the exception.
	Case1: You handle the exception
	Case2: You declare the exception

	Difference between throw and throws in Java
	Java throw example
	Java throws example
	Java throw and throws example

	Difference between final, finally and finalize
	Java final example
	Java finally example
	Java finalize example

	Java Custom Exception
	Multithreading in Java
	Advantages of Java Multithreading
	Multitasking
	1) Process-based Multitasking (Multiprocessing)
	2) Thread-based Multitasking (Multithreading)
	Note: At least one process is required for each thread.

	What is Thread in java
	Note: At a time one thread is executed only.

	Life cycle of a Thread (Thread States)
	2) Runnable
	3) Running
	4) Non-Runnable (Blocked)
	5) Terminated

	How to create thread
	Thread class:
	Commonly used Constructors of Thread class:
	Commonly used methods of Thread class:
	Runnable interface:
	Starting a thread:
	1) Java Thread Example by extending Thread class
	2) Java Thread Example by implementing Runnable interface

	Thread Scheduler in Java
	Sleep method in java
	Syntax of sleep() method in java
	Example of sleep method in java

	Can we start a thread twice
	What if we call run() method directly instead start() method?
	The join() method
	Syntax:
	getName(),setName(String) and getId() method:
	The currentThread() method:
	Syntax:

	Priority of a Thread (Thread Priority):
	3 constants defiend in Thread class:
	Example of priority of a Thread:

	Daemon Thread in Java
	Points to remember for Daemon Thread in Java
	Why JVM terminates the daemon thread if there is no user thread?
	Methods for Java Daemon thread by Thread class
	Simple example of Daemon thread in java
	Output
	Note: If you want to make a user thread as Daemon, it must not be started otherwise it will throw IllegalThreadStateException.

	ThreadGroup in Java
	Note: Now suspend(), resume() and stop() methods are deprecated.
	Constructors of ThreadGroup class
	Important methods of ThreadGroup class
	ThreadGroup Example

	Synchronization in Java
	Why use Synchronization
	Types of Synchronization
	Thread Synchronization
	Mutual Exclusive
	Concept of Lock in Java
	Understanding the problem without Synchronization
	Java synchronized method

	Synchronized Block in Java
	Points to remember for Synchronized block
	Example of synchronized block
	Same Example of synchronized block by using annonymous class:

	Static Synchronization
	Problem without static synchronization
	Example of static synchronization

	Inter-thread communication in Java
	1) wait() method
	2) notify() method
	3) notifyAll() method
	Understanding the process of inter-thread communication
	Why wait(), notify() and notifyAll() methods are defined in Object class not Thread class?
	Difference between wait and sleep?
	Example of inter thread communication in java

